Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Anne Nielsen, Christine J. McKenzie and Andrew D. Bond*

University of Southern Denmark, Department of Physics and Chemistry, Campusvej 55, 5230 Odense, Denmark

Correspondence e-mail: adb@chem.sdu.dk

Key indicators

Single-crystal X-ray study T = 180 K Mean σ (C–C) = 0.006 Å R factor = 0.048 wR factor = 0.116 Data-to-parameter ratio = 17.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Di- μ -chloro-bis({methyl [N,N-bis(2-pyridylmethyl)amino]acetate- $\kappa^4 N, N', N'', O$ }copper(II)) bis(perchlorate) monohydrate

The title compound, $[Cu_2Cl_2(C_{15}H_{17}N_3O_2)_2](ClO_4)_2 \cdot H_2O$, contains dichloro-bridged Cu^{II} complexes located on centres of inversion. The solvent water molecule lies on a twofold rotation axis and forms hydrogen bonds to two perchlorate anions.

Received 23 August 2006 Accepted 30 August 2006

Comment

In our previous report (Nielsen *et al.*, 2006), we described the dichloro-bridged Cu^{II} complex $[Cu_2Cl_2(bpgH)_2](ClO_4)_2$ -4CH₃CN, where bpgH is the tetradentate bis(2-pyridylmethyl)glycine ligand. The title compound, (I), is closely comparable, but with esterification of the carboxylate groups. Compound (I) contains dichloro-bridged dicopper(II) complexes (Fig. 1), lying on centres of inversion. The coordination geometry around Cu^{II} (Table 1) is closely comparable to that of the bpgH complex (Nielsen *et al.*, 2006), being approximately octahedral with significant elongation of the Cu1-O1 and Cu1-Cl1ⁱ bonds [symmetry code: (i) $\frac{1}{2} - x$, $\frac{1}{2} - y$, -z] on account of the Jahn-Teller distortion associated with Cu^{II}. The uncoordinated water molecule lies on a twofold rotation axis and forms hydrogen bonds to two perchlorate anions (Table 2).

Experimental

Esterification of the bpgH ligand to give methyl [bis(2-pyridylmethyl)amino]acetate (bpe) was achieved by a procedure similar to that reported by Rodriguez *et al.* (1997). Fe(ClO₄)₃·9H₂O (0.1103 g, 0.214 mmol) in 0.5 ml acetonitrile was added to bpgH {bpgH = [bis(2pyridylmethyl)amino]acetate, 0.1099 g, 0.213 mmol} in 2.5 ml hot acetonitrile. The initial orange precipitate was dissolved by addition of 1 ml water and one drop of 70% HClO₄. The solvent volume was reduced by evaporation under gentle heating and a fine orange precipitate of [Fe(bpe)Cl₃] was filtered off (yield 0.021 g). The metathesis reaction (replacing Fe by Cu) was carried out by dissolving the orange solid in a mixture of hot methanol (2.5 ml) and water (0.5 ml), and adding CuCl₂·2H₂O (0.0078 g, 0.046 mmol) in 0.25 ml methanol. Turquoise crystals were formed after 1–2 d [total yield of

© 2006 International Union of Crystallography All rights reserved

metal-organic papers

(I) 0.0104 g; *ca* 10% based on bpgH]. IR (KBr, cm⁻¹): ν (C=O) 1612 (*s*).

V = 3702.9 (2) Å³

 $D_x = 1.718 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation

 $\mu = 1.51 \text{ mm}^{-1}$

T = 180 (2) K

 $R_{\rm int} = 0.035$

 $\theta_{\rm max} = 28.3^\circ$

Block, turquoise

 $0.25 \times 0.08 \times 0.08 \text{ mm}$

36620 measured reflections

 $w = 1/[\sigma^2(F_o^2) + (0.0354P)^2]$

+ 16.3749*P*] where $P = (F_0^2 + 2F_c^2)/3$

 $\Delta \rho_{\rm max} = 1.18 \text{ e} \text{ \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.49 \ {\rm e} \ {\rm \AA}^{-3}$

 $(\Delta/\sigma)_{\rm max} < 0.001$

4535 independent reflections

3461 reflections with $I > 2\sigma(I)$

Z = 4

Crystal data

$$\begin{split} & [\text{Cu}_2\text{Cl}_2(\text{C}_{15}\text{H}_{17}\text{N}_3\text{O}_2)_2] - \\ & (\text{ClO}_4)_2\cdot\text{H}_2\text{O} \\ & M_r = 957.53 \\ & \text{Monoclinic, } C2/c \\ & a = 19.1398 \ (7) \text{ Å} \\ & b = 8.5993 \ (3) \text{ Å} \\ & c = 24.1605 \ (8) \text{ Å} \\ & \beta = 111.380 \ (1)^\circ \end{split}$$

Data collection

Bruker–Nonius X8-APEX-II CCD diffractometer Thin–slice ω and φ scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 2003) $T_{\min} = 0.735, T_{\max} = 0.889$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.116$ S = 1.114535 reflections 254 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1

Selected geometric parameters (Å, °).

Cu1-N1	1.992 (3)	Cu1-O1	2.386 (3)
Cu1-N2	2.068 (3)	Cu1-Cl1	2.2564 (8)
Cu1-N3	1.999 (3)	Cu1-Cl1 ⁱ	2.9424 (9)
N1-Cu1-N2	83.32 (12)	N3-Cu1-O1	94.26 (10)
N1-Cu1-N3	164.41 (11)	Cl1-Cu1-O1	100.28 (7)
N2-Cu1-N3	81.76 (12)	N1-Cu1-Cl1 ⁱ	86.91 (8)
N1-Cu1-Cl1	98.23 (8)	N2-Cu1-Cl1 ⁱ	90.04 (8)
N2-Cu1-Cl1	178.45 (9)	N3-Cu1-Cl1 ⁱ	88.60 (8)
N3-Cu1-Cl1	96.70 (8)	Cl1-Cu1-Cl1 ⁱ	90.00 (3)
N1-Cu1-O1	87.51 (11)	O1-Cu1-Cl1 ⁱ	168.91 (7)
N2-Cu1-O1	79.80 (10)		

Symmetry code: (i) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z$.

Table 2	2
---------	---

Hydrogen-bond geometry (Å, °).

$\overline{D - \mathrm{H} \cdots A}$	<i>D</i> -Н	$H \cdot \cdot \cdot A$	$D \cdots A$	$D-\mathrm{H}\cdots A$
$O1W-H1W\cdots O2A$	0.84 (6)	2.18 (2)	2.951 (7)	153 (2)

H atoms bound to C atoms were positioned geometrically and allowed to ride during subsequent refinement, with C–H = 0.95 Å

Figure 1

The cationic complex in (I), showing displacement ellipsoids at the 50% probability level for non-H atoms. [Symmetry code: (i) $\frac{1}{2} - x, \frac{1}{2} - y, -z$.]

and $U_{iso}(H) = 1.2U_{eq}(C)$ for Csp^2 , C-H = 0.99 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for the methylene groups, and C-H = 0.98 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for the methyl group. The methyl group was also allowed to rotate about its local threefold axis. The O atom of the water molecule is located on a twofold rotation axis at $(\frac{1}{2}, y, \frac{1}{4})$. The unique H atom was placed initially along the O1 $W \cdots$ O2A vector then refined with the O1W-H1W distance restrained to be 0.84 (1) Å, the H1 $W \cdots$ H1 W^{ii} distance restrained to be 1.37 (1) Å [symmetry code: (ii) $1 - x, y, \frac{1}{2} - z$], and $U_{iso}(H) = 1.5U_{eq}(O)$. The largest peak in the difference density lies in the vicinity of the perchlorate anion.

Data collection: *APEX2* (Bruker–Nonius, 2004); cell refinement: *SAINT* (Bruker, 2003); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2000); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

We are grateful to the Danish Natural Science Research Council (SNF) and Carlsbergfondet (Denmark) for provision of the X-ray equipment.

References

- Bruker (2003). SAINT. Version 7.06a. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker–Nonius (2004). APEX2. Version 1.0-22. Bruker–Nonius BV, Delft, The Netherlands.
- Nielsen, A., McKenzie, C. J. & Bond, A. D. (2006). Acta Cryst. E62, m2453– m2454.
- Rodriguez, M.-C., Lambert, F., Morgenstern-Badarau, I., Cesario, M., Guilhem, J., Keita, B. & Nadjo, L. (1997). *Inorg. Chem.*, 36, 3532–3531.

Sheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.